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Abstract

In the paper, a general thin plate theory including surface effects, which can be used for size-dependent static and
dynamic analysis of plate-like thin film structures, is proposed. This theory is a modification and generalization of
the thin plate model in [Lim, C.W., He, L.H., 2004. Size-dependent nonlinear response of thin elastic films with nano-
scale thickness. Int. J. Mech. Sci. 46, 1715–1726]. With the general theory, the governing equations of Kirchoff and
Mindlin plate models including surface effects are derived, respectively. Some numerical examples are provided to verify
the validities of the theory.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Ultra-thin plate- or beam-like structures with submicron thicknesses have attracted much attention due
to their potential as high sensitive, high frequency devices for applications in MEMS/NEMS (see, e.g.,
Evoy et al., 1999; Lavrik et al., 2004). Understanding mechanical properties of these elements are of fun-
damental concern in design and predicting performance of the devices. For structures with submicron sizes,
due to the increasing surface-to-bulk ratio, surface effects are likely to be significant and can considerably
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modify macroscopic properties. Experiments (Wong et al., 1997; Cuenot et al., 2004), thermodynamic and
atomistic simulations (Cammarate and Sieradzki, 1989; Sun and Zhang, 2003; Zhang and Sun, 2004; Zhou
and Huang, 2004) indicate that effective elastic properties of nanobeams and nanoplates are strongly size-
dependent. Despite molecular dynamics based methods have been increasingly applied to modeling and
simulation of nanomaterials and nanostrctural elements, they are restricted by computational capacities.
Even classical molecular dynamics computations are still limited to simulating on the order of 106–108

atoms for a few nanoseconds. For MEMS/NEMS structures and elements with at least one dimension
in micro-range (micro/nanobeam, plates, thin film, etc.), modeling and simulation of their overall physical
and mechanical properties and long time range dynamics analysis must be left to continuum methods.
Therefore, size-independent classical plate theories, in which surface effects are ignored, can be modified
accordingly for the modeling of ultra-thin plate-like structures.

It is known that surface of a solid is a region with its own atom arrangement and property differing
from the bulk (Ibach, 1997; Muller and Saul, 2004). To incorporate the effects of the surface, Gurtin
and Murdoch (1975a,b) modified the theory of classical mechanics by modeling the surface as a two-
dimensional membrane with different material properties adhering to the underlying bulk material with-
out slipping. The presence of surface stresses thus results in a set of non-classical boundary conditions,
which present the surface tractions on the bulk substrate in terms of surface stresses and inertia. The
non-classical boundary conditions, the surface stress–strain relations, and the equations of classical elas-
ticity for bulk material together form a coupled system of field equations. Based on the approach, it is
demonstrated that the surface effects can be interpreted and treated by additional size-dependent terms
added to overall elastic moduli of considered structural elements (Miller and Shenoy, 2000). The surface
elasticity theory by Gurtin and Murdoch (1975a,b) offers a continuum mechanics model to study mechan-
ical behavior of material with surface effects, and have received increasing interests in more recent re-
searches in studying some mechanical problems in structural elements with nanoscale dimensions
(Murdoch, 1976; Gurtin and Murdoch, 1978; Miller and Shenoy, 2000; Shenoy, 2002; Sharma et al.,
2003; Sharma and Ganti, 2004; He et al., 2004; Lim and He, 2004). This continuum mechanics approach
relies significantly on reliable constitutive constants of the surface layer, which could be determined by
experiments or atomistic computations. It is shown that with correctly choose surface elastic properties,
the continuum model is generally found to agree well with atomistic simulations (Miller and Shenoy,
2000).

The purpose of this paper is to generalize the size-dependent thin plate model developed by Lim and He
(2004) based on Gurtin and Murdoch�s surface elasticity theory (1975a,b). Lim and He (2004) suggested a
continuum model which can be applied to bending analysis of thin elastic film with nanoscale thickness. By
reviewing the derivations of the model, it is found that the normal stress along the surface of bulk substrate
is still ignored as treated in the classical plate theories, and therefore, some of the surface equilibrium rela-
tions in Gurtin and Murdoch (1975a,b) cannot be satisfied. This simplification is accurate enough for the
problems with relatively large-scale sizes. If the thickness of studied film is reduced to its critical length
scale, this treatment may induce some errors, especially for nanosized problems.

To take into account the equilibrium of surface, the normal stress inside and on the surface of bulk
substrate is introduced in the present work. Since the plate structures are thin, the normal stress along
the thickness inside the bulk material can be assumed properly (linear assumption in the paper), and sat-
isfies the constitutive relations on the surface. The general governing equations of the thin plate including
surface effects can be derived by integrating the constitutive equations of bulk material through the thick-
ness and replacing bulk stress components on the surface by the surface stress components through the
equilibrium relations between the surface and the bulk materials. With proper assumptions for displace-
ment components, a specific plate theory can be further obtained. As applications, the basic equations for
Kirchhoff and Mindlin plate theories including surface effects are provided, and some examples are
illustrated.
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2. Governing equations

Consider a thin plate structure with thickness h. A Cartesian coordinate system xi (i = 1,2,3) is intro-
duced so that the axes x1 and x2 are coordinates lying in the mid-plane of the plate, and the upper and lower
surfaces S+ and S� of the plate are defined by x3 = ±h/2, respectively.

The equations of motion for the body of the plate are given by
rij;j þ fi ¼ q€ui; ð1Þ

where rij and ui denote, respectively, stress and displacement, fi the body forces, and q the density. The sur-
face stresses on the surfaces S+ and S� of the plate are denoted by sþia and s�ia, respectively, and satisfied the
equilibrium relations (Gurtin and Murdoch, 1975a, 1978)
sþbi;b � rþi3 ¼ qþ0 €uþi ; at x3 ¼ h=2;

s�bi;b þ r�i3 ¼ q�0 €u�i ; at x3 ¼ �h=2;
ð2Þ
where rþi3 ¼ ri3ðxb; h=2; tÞ and r�i3 ¼ ri3ðxb;�h=2; tÞ are bulk stresses at x3 = ±h/2, respectively, uþi ¼
uiðxb; h=2; tÞ and u�i ¼ uiðxb;�h=2; tÞ are displacements at x3 = ±h/2, respectively, and q�0 are the surface
densities of the surface layers S+ and S�, respectively. In (1) and (2) and throughout the paper, Latin sub-
scripts range from the values 1 to 3, while Greek subscripts range over 1 and 2.

Since the thickness of the plate is very small compared to the other two dimensions, the governing equa-
tions (1) can be integrated through the thickness to obtain the global plate equations. To this end, define
resultant forces Nij and resultant moments Mij as
Nij ¼
Z h=2

�h=2

rij dx3; Mij ¼
Z h=2

�h=2

rijx3 dx3. ð3Þ
Multiplying Eq. (1) by dx3, and integrating through the thickness, we have
Nia;a þ rþi3 � r�i3 þ pi ¼
Z h=2

�h=2

q€ui dx3; ð4Þ
where pi ¼
R h=2

�h=2
fi dx3. Furthermore, multiplying Eq. (1) by x3 dx3, and integrating through the thickness,

we have
Mib;b � Ni3 þ
h
2
ðrþi3 þ r�i3Þ þ ri ¼

Z h=2

�h=2

q€uix3 dx3; ð5Þ
where ri ¼
R h=2

�h=2
fix3 dx3. Since the equation with i = 3 in (5) has no physical application, it is omitted in the

rest derivations.
Substituting the surface equilibrium relations (2) into (4) and (5), the governing equations of the plate

including the surface effects are obtained as
Nib;b þ sþbi;b þ s�bi;b þ pi ¼
Z h=2

�h=2

q€ui dx3 þ qþ0 €uþi þ q�0 €u�i ;

Mab;b þ
h
2
ðsþba;b � s�ba;bÞ � N a3 þ ra ¼

Z h=2

�h=2

q€uax3 dx3 þ
h
2
ðqþ0 €uþa � q�0 €u�a Þ.

ð6Þ
If the surface stresses are neglected, Eqs. (6) are reduced to classical global plate equations.
Define the generalized resultant forces and resultant moments as
N �ia ¼ Nia þ sþai þ s�ai; M�
ab ¼ Mab þ

h
2
ðsþba � s�baÞ; ð7Þ
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the governing equations (6) can be further written as
N �ib;b þ pi ¼
Z h=2

�h=2

q€ui dx3 þ qþ0 €uþi þ q�0 €u�i ;

M�
ab;b � N a3 þ ra ¼

Z h=2

�h=2

q€uax3 dx3 þ
h
2
ðqþ0 €uþa � q�0 €u�a Þ.

ð8Þ
Eqs. (8) are general governing equations of plate including surface effects. For different plate theories, the
related equations of motion can be obtained by substituting the assumed displacement components ui into
(8).
3. Constitutive relations

Assume that both the bulk and surfaces of the plate are homogeneous and isotropic, the constitutive
relations of the bulk materials is expressed by
rij ¼ kekkdij þ 2leij; ð9Þ
where k and l are Lamé constants, dij the Kronecker delta, and eij the strain components given by
eij ¼ 1
2
ðui;j þ uj;iÞ. ð10Þ
Since the plate is thin, the stress component r33 are small comparing to the in plane stress components
rab, which is simply assumed to be zero in the classical plate theories. However, the surface conditions (2)
will not be satisfied with the assumption. To improve the weakness, it is assumed here that the stress com-
ponent r33 varies linearly through the thickness and satisfies the balance conditions on the surfaces. With
the assumption, r33 can be written as
r33 ¼
1

2
ðrþ33 þ r�33Þ þ

1

h
ðrþ33 � r�33Þx3

¼ 1

2
ðsþb3;b � s�b3;b � qþ0 €uþ3 þ q�0 €u�3 Þ þ

1

h
ðsþb3;b þ s�b3;b � qþ0 €uþ3 � q�0 €u�3 Þx3. ð11Þ
It is noted that the relation (11) is also suitable for the materials with anisotropic properties. The stress–
strain relations (9) can then be simplified as
rib ¼
E

1þ m
eib þ

m
1� m

eccdib

� �
þ m

1� m
r33dib; ð12Þ
where E is Young�s modulus, and m Poisson�s ratio.
The constitutive relations of the surface layers S+ and S� as given by Gurtin and Murdoch (1975a,b,

1978) can be expressed as
s�ab ¼ s�0 dab þ ðl�0 � s�0 Þðu�a;b þ u�b;aÞ þ ðk
�
0 þ s�0 Þu�c;cdab þ s�0 u�a;b; s�a3 ¼ s�0 u�3;a; ð13Þ
where s�0 are residual surface tensions under unconstrained conditions, k�0 and l�0 the surface Lamé con-
stants, on the surfaces S+ and S�, respectively. If the top and bottom layers have same material properties,
the stress–strain relations (13) reduce to
s�ab ¼ s0dab þ ðl0 � s0Þðu�a;b þ u�b;aÞ þ ðk0 þ s0Þu�c;cdab þ s0u�a;b; s�a3 ¼ s0u�3;a; ð14Þ
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and the stress component r33 in (11) is reduced to
r33 ¼
1

2
sþb3;b � s�b3;b � q0ð€uþ3 � €u�3 Þ
h i

þ 1

h
sþb3;b þ s�b3;b � q0ð€uþ3 þ €u�3 Þ
h i

x3. ð15Þ
4. Basic equations for two plate theories

The most commonly used thin plate theories include Kirchhoff plate theory and Mindlin plate theory.
The basic equations of these two plate theories are obtained in this section based on the discussions above.

4.1. Kirchhoff plate theory

In Kirchhoff plate theory, the displacement components are assumed to have the form
ua ¼ u0
a � x3u0

3;a; u3 ¼ u0
3; ð16Þ
where u0
i ¼ u0

i ðxb; tÞ is the displacement components of the mid-plane at time t.
Substituting (16) into (8), and defining
I ¼
Z h=2

�h=2

qdx3 ¼ qh; J ¼
Z h=2

�h=2

qx2
3 dx3 ¼

qh3

12
; ð17Þ
one has the equations M�
ab;b � N a3 þ ra ¼ � J þ h2ðqþ0 þ q�0 Þ=4

� �
€u0

3;a þ hðqþ0 � q�0 Þ=2
� �

€u0
a and N �ib;b þ pi ¼

ðI þ qþ0 þ q�0 Þ€u0
i � ½hðqþ0 � q�0 Þ=2�€u0

3;adia, which can be further simplified as
N �ab;b þ pa ¼ ðI þ qþ0 þ q�0 Þ€u0
a �

h
2
ðqþ0 � q�0 Þ€u0

3;a;

M�
ab;ab þ sþb3;b þ s�b3;b þ ra;a þ p3 ¼ ðI þ qþ0 þ q�0 Þ€u0

3 � J þ h2

4
ðqþ0 þ q�0 Þ

� �
€u0

3;aa þ
h
2
ðqþ0 � q�0 Þ€u0

a;a.

ð18Þ
By comparing (18) with the equations of motion of thin plate obtained by Lim and He (2004), it is found
that the terms ðsþb3;b þ s�b3;bÞ relating surface stresses in the last equation of (18) were missing in their
derivations.

The strain components for the plate theory can be obtained by substituting (16) into (10) as
eab ¼ e0
ab � x3u0

3;ab; e3a ¼ 0; ð19Þ
with
e0
ab ¼

1

2
ðu0

a;b þ u0
b;aÞ. ð20Þ
The resultant forces N �ab and the resultant moments M�
ab for the Kirchhoff plate theory can be obtained

by substituting (16) and (19) into (12)–(15), and then into (3) and (7). If the top and bottom surface layers
have considered having the same material properties, the resultant forces can be obtained as
N �ab ¼ 2s0ðdab þ u0
a;bÞ þ

Eh
1� m2

ð1� mÞ 1þ 2
l2 � l1

h

� 	
e0
ab þ m 1þ l3

h

� 	
e0
ccdab

� �
;

M�
ab ¼ �

Eh3

12ð1� m2Þ ð1� mÞ 1þ 3
l2

h

� 	
u0

3;ab þ m 1þ 3l3 � l1

h

� 	
u0

3;ccdab

� �
� h2m

6ð1� mÞ q0€u
0
3dab;

ð21Þ
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where
l1 ¼
2ð1þ mÞs0

E
; l2 ¼

2ð1þ mÞl0

E
; l3 ¼

2ð1� m2Þðk0 þ s0Þ
Em

; ð22Þ
are material characteristic lengths indicating surface effect. The equations of motion (18) are thus expressed
by displacements as
2s0u0
a;bb þ

Eh
1� m2

1� m
2

1þ 2
l2 � l1

h

� 	
ðu0

a;bb þ u0
b;abÞ þ m 1þ l3

h

� 	
u0

c;cbdab

� �
þ pa ¼ ðI þ 2q0Þ€u0

a;

2s0u0
3;aa �

Eh3

12ð1� m2Þ ð1� mÞ 1þ 3
l2

h

� 	
u0

3;abab þ m 1þ 3l3 � l1

h

� 	
u0

3;ccabdab

� �
þ ra;a þ p3

¼ ðI þ 2q0Þ€u0
3 � J þ h2

6

3� 4m
1� m

q0

� �
€u0

3;aa.

ð23Þ
The plate thickness dependent terms with li in (21) and (23) can be regarded as modifications of overall
elastic moduli by considering surface effects.

4.2. Mindlin plate theory

In Mindlin plate theory, the displacement components are assumed to have the form
ua ¼ u0
a þ x3wa; u3 ¼ u0

3; ð24Þ

where wa ¼ waðxb; tÞ are independent variables. By substituting (24) into (8), the motion equations of
Mindlin plate theory including surface effect can be written as
N �ib;b þ pi ¼ ðI þ qþ0 þ q�0 Þ€u0
i þ

h
2
ðqþ0 � q�0 Þ€wadia;

M�
ab;b � N a3 þ ra ¼ J þ h2

4
ðqþ0 þ q�0 Þ

� �
€w
þ
a

h
2
ðqþ0 � q�0 Þ€u0

a.

ð25Þ
The strain components for the plate theory can be obtained by substituting (24) into (10) as
eab ¼ e0
ab þ x3e

1
ab; e3a ¼

1

2
ðu0

3;a þ waÞ; ð26Þ
with
e0
ab ¼

1

2
ðu0

a;b þ u0
b;aÞ; e1

ab ¼
1

2
ðwa;b þ wb;aÞ. ð27Þ
The resultant forces N �ib and resultant moments M�
ab for the Mindlin plate theory can be obtained by

substituting (24) and (26) into (12)–(15), and then into (3) and (7). If the top and bottom surface layers have
considered having the same material properties, the resultant forces can be obtained as
N �ab ¼ 2s0ðdabþ u0
a;bÞþ

Eh
1� m2

ð1� mÞ 1þ 2
l2� l1

h

� 	
e0
abþ m 1þ l3

h

� 	
e0
ccdab

� �
;

N �3b ¼
Eh

2ð1þ mÞ 1þ 2
l1

h

� 	
u0

3;bþwb

� �
;

M�
ab ¼

Eh3

12ð1� m2Þ ð1� mÞ 1þ 6
l2� l1

h

� 	
e1
abþ 3

l1

h
wa;b

� �
þ m 1þ 3

l3

h

� 	
e1
ccþ

l1

h
u0

3;cc

� �
dab


 �
� h2m

6ð1� mÞq0€u0
3dab;

ð28Þ

where l1 to l3 are same as those defined in (22).
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The equations of motion (25) are thus expressed by displacements as
2s0u0
a;bb þ

Eh
1� m2

1� m
2

1þ 2
l2 � l1

h

� 	
ðu0

a;bb þ u0
b;abÞ þ m 1þ l3

h

� 	
u0

c;cbdab

� �
þ pa ¼ ðI þ 2q0Þ€u0

a;

Eh
2ð1þ mÞ 1þ 2

l1

h

� 	
u0

3;bb þ wb;b

� �
þ p3 ¼ ðI þ 2q0Þ€u0

3;

Eh3

12ð1� m2Þ
1� m

2
1þ 6

l2 � l1

h

� 	
ðwa;bb þ wb;abÞ þ 3

l1

h
wa;bb

� �
þ m 1þ 3

l3

h

� 	
wc;c þ

l1

h
u0

3;ccb

� �
dab


 �

� Eh
2ð1þ mÞ u0

3;b þ wb

h i
þ ra ¼ J þ h2

2
q0

� 	
€w
þ
a

h2m
6ð1� mÞ q0€u

0
3;a.

ð29Þ
5. Examples—Cylindrical bending of plates

As examples, we consider applications of the theories derived above to simply supported cylindrical
bending and vibration of an infinitely wide thin plate with finite length l, in which the displacements, strains
and stresses depend on coordinate x1 only. In the examples, numerical illustrations are produced based on
calculated results from two sets of material parameters given in Gurtin and Murdoch (1978):
E ¼ 5:625� 1010 N=m2; m ¼ 0:25; q ¼ 3� 103 kg=m3; k0 ¼ 7� 103 N=m; l0 ¼ 8� 103 N=m;

s0 ¼ 110 N=m; q0 ¼ 7� 10�4 kg=m2;
for Material I, and
E ¼ 17:73� 1010 N=m2; m ¼ 0:27; q ¼ 7� 103 kg=m3; k0 ¼ �8 N=m; l0 ¼ 2:5 N=m;

s0 ¼ 1:7 N=m; q0 ¼ 7� 10�6 kg=m2;
for Material II.

5.1. Solutions with Kirchhoff theory

In cylindrical bending, the displacements in (16) rely on x1 only, i.e. u0
i ¼ u0

i ðx1; tÞ. Therefore, the nonzero
resultant forces and moments are reduced to
N �11 ¼ 2s0 þ
Eh

1� m2
1þ g1

h

� �
u0

1;1; N �21 ¼
Eh

2ð1þ mÞ 1þ 2l2

h

� 	
u0

2;1;

M�
11 ¼ �

Eh3

12ð1� m2Þ 1þ g2

h

� �
u0

3;11 �
mh2

6ð1� mÞ q0€u
0
3;

ð30Þ
where
g1 ¼ ð1� mÞð2l2 � l1Þ þ ml3; g2 ¼ 3ð1� mÞl2 þ mð3l3 � l1Þ; ð31Þ
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and the equations of motion (23) are reduced to
Eh
1� m2

1þ g1

h

� �
u0

1;11 þ p1 ¼ ðI þ 2q0Þ€u0
1;

Eh
2ð1þ mÞ 1þ 2l2

h

� 	
u0

2;11 þ p2 ¼ ðI þ 2q0Þ€u0
2;

2s0u0
3;11 �

Eh3

12ð1� m2Þ 1þ g2

h

� �
u0

3;1111 þ r1;1 þ p3 ¼ ðI þ 2q0Þ€u0
3 � J þ h2

6

3� 4m
1� m

q0

� 	
€u0

3;11.

ð32Þ
The simply supported boundary conditions along edges x1 = 0 and l are defined by
u0
3 ¼ 0; N �11 ¼ N �21 ¼ M�

11 ¼ 0. ð33Þ
5.1.1. Static bending
For static cylindrical bending, the displacements satisfying the boundary conditions (33) can be written

as
u0
a ¼ U �aK cos qnx1; u0

3 ¼ U �3K sin qnx1; ð34Þ

where
qn ¼ np=l; ð35Þ

with n being a positive integral, and U �aK and U �3K indicate maximal values of displacement components un-
der Kirchhoff theory.

Further assuming that the plate is subjected to sinusoidal loading p3 ¼ P 3 sin qnx1 only, and
p1 = p2 = r1 = 0. The following relations for the static cylindrical bending can thus be obtained by substi-
tuting (34) and loading conditions in (32) as
U �1K ¼ U �2K ¼ 0; U �3K ¼ P 3 2s0q2
n þ

Eh3

12ð1� m2Þ 1þ g2

h

� �
q4

n


 ��
. ð36Þ
Therefore, the solutions of the resultant forces and moments for the static cylindrical bending are obtained
as
N �11 ¼ N �21 ¼ 0; M�
11 ¼

Eh3

12ð1� m2Þ 1þ g2

h

� �
U �3Kq2

n sin qnx1; ð37Þ
where U �3K is given in (36).
It is noted from (36) and (37) that the bending stiffness for the cylindrical bending by including surface

effects can be defined by
D� ¼ D0ð1þ g2=hÞ; ð38Þ

where D0 = Eh3/12(1 � m2) is the bending stiffness of an isotropic material in classical plate theories. For
comparison, the bending stiffness for cylindrical bending based on equations in Lim and He (2004) but
omitting nonlinear effects is also listed here:
D�1 ¼ D0½1þ ðg2 þ ml1Þ=h�; ð39Þ

where l1 is given in (22). Thus, the non-dimensional difference between different bending modulus are ob-
tained as
D� � D0

D0

¼ g2

h
;

D� � D�1
D0

¼ � ml1

h
. ð40Þ
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It is seen that the differences are similar as those obtained by Miller and Shenoy (2000), and are inversely
proportional to plate thickness h. The parameter g2 is the ratio between the surface properties and the bulk
properties to determine significance of surface effects under cylindrical bending, and is explicitly given by
g2 ¼ 6ð1� m2Þðk0 þ l0 þ s0Þ � 2mð1� mÞs0½ �=E.

Fig. 1 shows the differences for the properties of materials I and II respectively. For the data of material
I, the size effect becomes significant when the thickness of the film is smaller than 10 lm (Fig. 1a), while for
data of material II it is significant when the thickness of the film is of the order of 1 nm (Fig. 1b). The results
agree with the discussions by Lim and He (2004) for the same problems. It is also noted that the bending
stiffness increases for the material I (Fig. 1a), while decreases for the material II (Fig. 1b), when the film
thickness is reduced. It shows that surface effects could stiffen or soften material properties (Zhou and
Huang, 2004). The significant difference of the thickness order on the influence of the size effects for the
materials I and II is due to the surface elastic properties defined for the two materials. It is noted that
the surface elastic properties for the material I are approximately 3 order higher than those for the material
I, which in turn significantly increase the order of the critical thickness for the material I. Therefore, reliable
elastic properties for the surface layer play very important roles to provide reasonable predictions based on
the continuum models.

In addition, Fig. 2 also shows the non-dimensional differences of effective bending modulus by the two
theories. For the data of material I, the difference is three order smaller than the value shown in Fig. 1a,
which means that both theories can provide similar predications. For the data of material II, however,
the difference shown in Fig. 2b is only one order smaller than the value shown in Fig. 1b, and should be
considered in the calculations. It is because that ðD� � D�1Þ=D0 � s0=h, and the surface stress s0 is two to
three order smaller than corresponding surface material constants k0 and l0 for material I, and is in same
order for material II. Therefore, for surface properties of material with the same order values of s0, k0 and
l0, in which the intrinsic material length is not dominated by the surface constants k0 and l0, more general
theories given in the paper should be used.
Fig. 1. Non-dimensional difference between plate bending modulus predicted by present size-dependent plate theory and that by
classical plate theory: (a) for data of material I and (b) for data of material II.



Fig. 2. Non-dimensional difference between plate bending modulus predicted by present plate model and that by Lim and He�s (2004)
plate model: (a) for data of material I and (b) for data of material II.
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By considering n = 1, the maximal transverse displacement in (36) can be written as
U �3K ¼
U 3K

12ð1� mÞðs=pÞ2l1=hþ ð1þ g2=hÞ
; U 3K ¼

12ð1� m2Þh
E

s
p

� �4

P 3; ð41Þ
where s = l/h is span-to-thickness ratio, U3K the maximal transverse displacement without considering sur-
face effects. For constant span-to-thickness ratio s = 10, the non-dimensional differences of the transverse
displacements are shown in Fig. 3a and b, respectively, for the data of materials I and II. It is seen that size
effects tend to be significant when the thickness of the film approach to intrinsic length scales of the
materials.

5.1.2. Free vibration

It is seen from (32) that the in-plane and out-of-plane vibrations are uncoupled for the cylindrical vibra-
tion. To obtain the frequency of transverse vibration, it is assumed that u0

3 is of the form
u0
3 ¼ U �3K sin qnx1 sin xnt; ð42Þ
where xn is the nth order frequency of transverse vibration. By substituting (42) into third equation in (32),
the frequency xn can be obtained as
x2
n ¼ 2s0q2

n þ
Eh3

12ð1� m2Þ 1þ g2

h

� �
q4

n

� �
ðI þ 2q0Þ þ J þ h2

6

3� 4m
1� m

q0

� 	
q2

n

� �
.

�
ð43Þ
If the surface effects are neglected, Eq. (43) is reduced to the expressions of the frequencies for classical
plate theory. The non-dimensional differences between the first order frequencies with and without the sur-
face effects are shown in Fig. 4, where s = 10 is taken. The size dependent resonant properties should receive



Fig. 3. Non-dimensional difference between deflection predicted by present size-dependent Kirchhoff plate theory and that by classical
Kirchhoff plate theory: (a) for data of material I and (b) for data of material II.

Fig. 4. Non-dimensional difference between the first order frequency predicted by present size-dependent Kirchhoff plate theory and
that by classical Kirchhoff plate theory: (a) for data of material I and (b) for data of material II.
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special attention in the design of micro/nanoresonant sensors, in which surface effects play a significant role
(Lavrik et al., 2004).
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5.2. Solutions with Mindlin theory

In Mindlin plate theory, the displacement field for cylindrical bending has the form
u1 ¼ u0
1 þ x3w1; u2 ¼ u0

2; u3 ¼ u0
3; ð44Þ
where u0
i ¼ u0

i ðx1; tÞ and w1 ¼ w1ðx1; tÞ rely on x1 only. The resultant forces and moments (28) for Mindlin
plate theory are reduced to
N �11 ¼ 2s0 þ
Eh

1� m2
1þ g1

h

� �
u0

1;1;

N �21 ¼
Eh

2ð1þ mÞ 1þ 2l2

h

� 	
u0

2;1;

N �31 ¼
Eh

2ð1þ mÞ 1þ 2l1

h

� 	
u0

3;1 þ w1

� �
;

M�
11 ¼

Eh3

12ð1� m2Þ 1þ 3
g1

h

� �
w1;1 þ m

l1

h
u0

3;11

� �
� mh2

6ð1� mÞ q0€u
0
3;

ð45Þ
where g1 is given in (31), and the equations of motion (29) are reduced to
Eh
1� m2

1þ g1

h

� �
u0

1;11 þ p1 ¼ ðI þ 2q0Þ€u0
1;

Eh
2ð1þ mÞ 1þ 2l2

h

� 	
u0

2;11 þ p2 ¼ ðI þ 2q0Þ€u0
2;

Eh
2ð1þ mÞ 1þ 2l1

h

� 	
u0

3;11 þ w1;1

� �
þ p3 ¼ ðI þ 2q0Þ€u0

3;

Eh3

12ð1� m2Þ 1þ 3
g1

h

� �
w1;11 þ m

l1

h
u0

3;111

� �
� Eh

2ð1þ mÞ ½u
0
3;1 þ w1� þ r1 ¼ J þ h2

2
q0

� 	
€w
þ
1

h2m
6ð1� mÞ q0€u

0
3;1.

ð46Þ
5.2.1. Static bending

Similar to the expressions given in (34), the displacement field satisfying the simply supported edge
boundary conditions can be written as
u0
a ¼ U �aM cos qnx1; u0

3 ¼ U �3M sin qnx1; w1 ¼ W�1M cos qnx1; ð47Þ

where qn is defined in (35), and U �aM , U �3M and W�1M indicate maximal values of displacement components
under Mindlin theory.

Again assuming that the plate is subjected to sinusoidal loading p3 = P3 sinqnx1 only, and
p1 = p2 = r1 = 0. By substituting (47) and nonzero load to (46) and considering static terms only, we have
U �1M ¼ U �2M ¼ 0; 1þ 2l1

h

� 	
q2

nU �3M þ qnW
�
1M ¼

2ð1þ mÞ
Eh

P 3;

m
l1

h
q3

n þ
6ð1� mÞ

h2
qn

� �
U �3M þ 1þ 3

g1

h

� �
q2

n þ
6ð1� mÞ

h2

� �
W�1M ¼ 0;

ð48Þ
which gives solutions for U �3M and W�1M as
U �3M ¼
D1

D
; W�1M ¼

D2

D
; ð49Þ
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where
D1 ¼ �
2ð1þ mÞ

Eh
1þ 3

g1

h

� �
q2

n þ
6ð1� mÞ

h2

� �
P 3;

D2 ¼
2ð1þ mÞ

Eh
m

l1

h
q3

n þ
6ð1� mÞ

h2
qn

� �
P 3;

D ¼ � 1þ 3g1 þ ð2� mÞl1

h
þ 6g1l1

h2

� �
q4

n �
12ð1� mÞl1

h3
q2

n.

ð50Þ
Therefore, the solutions of the resultant forces and moments for the static cylindrical bending are obtained
as
N �11 ¼ N �21 ¼ 0;

N �31 ¼
Eh

2ð1þ mÞ 1þ 2l1

h

� 	
qnU �3M þW�1M

� �
cos qnx1;

M�
11 ¼ �

Eh3

12ð1� m2Þ 1þ 3
g1

h

� �
W�1M þ m

l1

h
qnU �3M

� �
qn sin qnx1;

ð51Þ
where U �3M and W�1M are given in (49).
By considering n = 1 and s = l/h, the maximal displacement and rotation components in (49) can be

written as
U �3M ¼
1þ 3g1=hþ 6ð1� mÞðs=pÞ2

1þ ½3g1 þ ð2� mÞl1�=hþ 6g1l1=h2 þ 12ð1� mÞðs=pÞ2l1=h

2ð1þ mÞðs=pÞ2h
E

P 3;

W�1M ¼ �
ml1=hþ 6ð1� mÞðs=pÞ2

1þ ½3g1 þ ð2� mÞl1�=hþ 6g1l1=h2 þ 12ð1� mÞðs=pÞ2l1=h

2ð1þ mÞs=p
E

P 3.

ð52Þ
If the surface effects are neglected, the about results are reduced to the corresponding expressions in clas-
sical Mindlin plate theory:
U 3M ¼
2ð1þ mÞðs=pÞ2½1þ 6ð1� mÞðs=pÞ2�h

E
P 3; W1M ¼ �

12ð1� m2Þðs=pÞ3

E
P 3. ð53Þ
For constant span-to-thickness ratio s = 10, the non-dimensional differences between the components
computed, respectively, by including and without considering the surface effects are shown in Fig. 5 for
the data of materials I and II. It is seen that the differences for the transverse displacement and the rotation
component are in similar ranges when the thickness of the film approach to its intrinsic length scales.

In Fig. 6, the ratio of the transverse displacement components between Kirchhoff and Mindlin plate the-
ories are plotted. In classical plate models, thickness shear strains are not considered in Kirchhoff theory,
but are introduced in Mindlin theory. Therefore, the behavior of a plates based on Kirchhoff plate theory is
generally stiffer than that based on Mindlin plate theory. If the surface effects are not considered, the trans-
verse deflection ratio U3K/U3M is always smaller than one. However, it is interesting to note from Fig. 6 that
if the surface effects are considered, the ratio U �3K=U �3M tends to increase when the film thickness is reduced.

5.2.2. Free vibration

It is seen from (46) that the in-plane and out-of-plane vibrations are still uncoupled for the cylindrical
vibration in Mindlin plate theory. To obtain the frequency of transverse vibration, it is assumed that u0

3 and
w1 have the form
u0
3 ¼ U �3M sin qnx1 sin xnt; w1 ¼ W�1M cos qnx1 sin xnt. ð54Þ



Fig. 5. Non-dimensional differences of deflection and rotation predicted, respectively, by present size-dependent Mindlin plate theory
and classical Mindlin plate theory: (a) difference of deflection for data of material I, (b) difference of rotation for data of material I, (c)
difference of deflection for data of material II, and (d) difference of rotation for data of material II.

Fig. 6. Ratio of deflections predicted by size-dependent Kirchhoff and Mindlin plate theories, respectively: (a) for data of material I
and (b) for data of material II.
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By substituting (54) into last two equations in (22), we have
Fig. 7.
classica
Eh
2ð1þ mÞ 1þ 2l1

h

� 	
q2

nU �3M þ qnW
�
1M

� �
¼ ðI þ 2q0ÞU �3Mx2

n;

Eh3

12ð1� m2Þ 1þ 3
g1

h

� �
q2

nW
�
1M þ m

l1

h
q3

nU �3M

� �
þ Eh

2ð1þ mÞ ½qnU �3M þW�1M �

¼ J þ h2

2
q0

� 	
W�1M þ

h2m
6ð1� mÞ q0qnU �3M

� �
x2

n;

ð55Þ
which can be further simplified as
ðA11 � B11x
2
nÞU �3M þ A12W

�
1M ¼ 0;

ðA21 � B21x
2
nÞU �3M þ ðA22 � B22x

2
nÞW�1M ¼ 0;

ð56Þ
where
A11 ¼ 1þ 2l1

h

� 	
q2

n; A12 ¼ qn; A21 ¼ m
l1

h
q3

n þ
6ð1� mÞ

h2
qn;

A22 ¼ 1þ 3
g1

h

� �
q2

n þ
6ð1� mÞ

h2
; B11 ¼

2ð1þ mÞ
Eh

ðI þ 2q0Þ;

B21 ¼
2mð1þ mÞ

Eh
q0qn; B22 ¼

12ð1� m2Þ
Eh3

J þ h2

2
q0

� 	
.

ð57Þ
From (56), non-trivial solutions for U �3M and W�1M require that
C1x
4
n þ C2x

2
n þ C3 ¼ 0; ð58Þ
Non-dimensional differences between frequencies predicted by present size-dependent Mindlin plate theory and those by
l Mindlin plate theory: (a) and (b) for data of material I, (c) and (d) for data of material II.
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with
C1 ¼ B11B22; C2 ¼ A12B21 � A11B22 � B11A22; C3 ¼ A11A22 � A12A21. ð59Þ

Therefore, with each n, we obtain two frequencies. One is the frequency for the transverse vibration, and the
other is the frequency for the thickness shear vibration, which are given by
x�2n1 ¼
�C2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

2 � 4C1C3

q
2C1

; x�2n2 ¼
�C2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

2 � 4C1C3

q
2C1

. ð60Þ
The non-dimensional differences between the frequencies with and without the surface effects are shown
in Fig. 7 for s = 10 and n = 1. It also shows that the size effects tend to be significant when the thickness of
the film reaches its intrinsic length scales.
6. Concluding remarks

A thin plate model including the surface effects which can be used for size-dependent static and dynamic
analysis of plate-like thin film structures has been proposed. This model is a modification and generaliza-
tion of the thin plate theory developed by Lim and He (2004). The model is derived based on linear elas-
ticity theory for simplicity, but can also be extended to the problems with nonlinear deformations as treated
in Lim and He (2004). By comparing with the relations given in Lim and He (2004) but omitting the non-
linear effects, the Kirchhoff plate theory derived in this paper have some additional terms. The coefficients
of these terms relate to the surface stress s0 and surface density q0 only for isotropic material properties
considered. Therefore, the differences of the results obtained by the two models rely on the magnitudes
of these two surface properties as discussed in Fig. 2. The numerical examples show that the size effects tend
to be significant when the thicknesses of the plate-like thin film structures approach to its intrinsic length
scales of the materials, which is generally found to be in agreement with results from experiments and atom-
istic simulations. To predict the overall static and dynamic properties of a plate-like thin film structure
based on the continuum model, reliable material constants of its bulk and surface materials should be
known. Therefore, precise measurement technique or efficient atomistic computational means are required
to extract the constants.
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